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Absfruci
We view an Intelligent Information *stem  (IIS)  as
composed of a unified knowledge base, database,
and model base. The model  base includes decision
support  models  such as  growth and y ie ld  s imulat ion
models, forecasting models, and visualization
models for example. In aa?iition,  we feel that the
model  base should include domain specific  problem
solv ing modules  as  wel l  as  decis ion support  models .
This, then, allows an IIS  to provide responses to
user queries regardless of whether the query
process involves a data retrieval, an inference, a
computational method, a problem solving module
(employing, for example, a non-production rule
based heuristic search technique), or some
combination of these. The unified  integration of
these components in a distributed environment for
forest ecosystem management is the focus of our
research.

Introduction

In the past decade, organizations have been
moving mainframe-based systems toward open, distributed
computing environments. The demand for interoperability
has been driven by the accelerated construction of large-
scale distributed systems for operational use and by
increasing use of the Internet (Manola 1995). Distributed
computing offers many advantages, including. location
transparency to users, scalability, fault tolerance, load
balancing and resource sharing. As such, much of the
interoperability literature has been concerned with
distributed computing; for example, the recent emergence
of Java, the Object Management Group’s CORBA
(Common Object Request Broker Architecture) and
Microsoft’s DCOM (Distributed Component Object
Model) are all for this purpose (Grimes 1997, Leppinen et
al. 1997, OMG 1997). In addition, object orientation (00)
is probably the most widely used approach in software
development and the basis for the CORBA and DCOM
interoperability architectures. 00 makes it easier to
maintain software modules, and makes it possible to re-use
existing software objects (Gamma et al. 1995).
Consequently, platform independence, as well as language
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independence, has been a major focus in these
interoperability architectures.

The interoperability architecture for our unified,
distributed knowledge/data/model management approach is
based on a combination of DCOM and Active KDL
(Active Knowledge/Data Language). DCOM provides the
middleware protocol necessary to handle distributed
interaction among our forest ecosystem management
applications. It is a built-in component of the Microsoft
NT and Windows 98 operating systems. Active KDL
follows the functional and object-oriented paradigms
(Miller et al. 1991a, Miller et al. 1991b). Active KDL is
based on the hyper-semantic data model, KDM
(Knowledge/Data Model) developed in the mid-1980’s
(Potter and Kerschberg 1986). By hyper-semantic, we
mean a data (information) mode1 capable of capturing even
more of the meaning of an application area than captured
via traditional, semantic, or object-oriented models (Potter
and Trueblood 1988, Potter et al. 1989).

A typical forest ecosystem management decision
support system (FEM-DSS) contains a user interface,
database, geographical information system (GIS), possibly
a knowledge base, simulation and optimization models,
help/hypertext management, data visualization and
decision methods (Rauscher 1999). Recent reviews have
identified that at least 30 FEM-DSS have been developed
for use in the United States (Mowrer, 1997; Rauscher
1999). Different FEM-DSS support different parts of the
ecosystem management process. Functional service
modules, also known as problem solving modules (PSM),
provide specialized support for one or a few phases of the
forest ecosystem management process. These PSM are
further categorized by their function, for example, group
negotiations, vegetation dynamics, disturbance simulation,
and spatial visualization. Full service FEM-DSS on the
other hand, attempt to be comprehensive by offering
support for the complete forest ecosystem management
process. These full-service systems may be further
classified into the following by the scale of support:
regional assessment, forest planning and project-level
planning (Rauscher 1999).

Most FEM-DSS were developed independently of
one another. As a result, they are typically large,
monolithic, stand-alone systems. Although, collectively,
the existing FEM-DSS are capable of addressing the full



range of support required for the management of a
complex forest ecosystem no one system has been found to
be completely satisfactory (Mowrer et al. 1997, Rauscher
1999). An ideal FEM system, therefore, requires many Of
the available DSSs working together. This necessitates
both functional service and full-service systems
integration. Besides, it is often more cost-effective to re-
use existing software than to develop custom software
when an existing FEM-DSS is to be enhanced to provide
additional services.

To achieve integrated operation of FEM-DSS, it is
necessary to overcome the problems presented by the
variety of platforms these legacy systems run on and the
heterogeneity of their development environments. Existing
FEM-DSS have been written in different software
languages, they reside on different hardware platforms,
they have different data access mechanisms, and different
component/module interfaces. For example, non-
geographical databases may be written in Oracle,
geographical information system (GIS) databases in
ARC/INFO, knowledge bases in Prolog, and a simulation
model in Fortran. To date, efforts to achieve
interoperability between FEM-DSS modules have used ad
hoc techniques yielding unique, point-to-point custom
solutions. While such unique solutions work, they are
typically very difficult to maintain and extend by other
developers due to their idiosyncratic nature. No
comprehensive, theory-based interoperability standard
currently exists for achieving integrated operations of
FEM-DSS (Rauscher, 1999).

A cooperative research program between
scientists of the Artificial Intelligence Center at the
University of Georgia and the USDA Forest Service is
currently underway to develop an Intelligent Information
System (IIS) component for NED, a forest ecosystem
management Decision Support System (Rauscher et al
1997, Twety  et al. 1997). NED is a comprehensive fit11
service FEM-DSS. The NED-IIS  supports knowledge,
data, and model management in a distributed environment.
The immediate goal is the seamless integration of several
existing, loosely coupled legacy USDA Forest Service
systems within the NED architecture. Additional systems
will be added at a later time using the interoperability
standard designed and tested in this initial effort.

In this paper, we focus on three important facets
of the NED-IIS.  The first facet deals with how a forest
manager would interact with our system. A manager
interfaces with it via a standard client process that may
provide knowledgeable assistance. The knowledge driving
the interface and controlling the decision models is
maintained within the interface controller. The interface
controller is based on the notion of query driven
processing. That is, a user specifies a query to the NED-
IIS  and the interface controller determines how best to
respond to the query. The response may entail a variety of
events taking place. Providing the hand-shaking
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architectural SUpport  for our distributed environment is the
second facet. We use Microsoft’s Distributed Component
Object Model (DCOM) to facilitate the distributed
integration of the decision model components (Microsoft
1995, 1996, 1997, 1998). The integrated decision model
components of our intelligent information system
prototype (the third facet) are FVS, SILVAH, and FIBER.
FVS is a Forest Vegetation Simulator that projects the
growth of forest stands under a variety of conditions (Teck
et al. 1996, Teck et al. 1997). SILVAH (Marquis et al.
1992) is the SILViculture  of Allegheny Hardwoods
prescription system that aids forest managers in making
treatment decisions. FIBER (Solomon et al. 1992) is a
forest stand growth projection system that deals with
interactions of a variety of tree species in the stand.

The organization of this paper follows the order of
the three NED-IIS  facets. We discuss the approach we
take for providing distributed interoperable functionality.
We briefly discuss the “middleware” layer of our approach
(i.e., DCOM). Finally, we provide an overview of the
integrated decision model components and our interface
controller prototype.

Conceptual Architecture

Before discussing the details of Active KDL, we
want to define our view of interoperability. One solution
to many of the problems in systems integration is
interoperability of software  systems (Potter et al. 1992,
Potter et al. 1994, Otte et al. 1996, Liu 1998).
Interoperability is the ability for two or more software
components to cooperate by exchanging services and data
with one another, despite the possible heterogeneity in
their language, interface and hardware platform (Heiler
1995, Wegner 1996, Sheth 1998). Interoperable systems
provide a software standard that promotes communication
between components, and provides for the integration of
legacy and newly developed components.

The Active KDL Knowledge Data Base System
(Miller et al. 1991a, Miller et al. 1991b) is capable of
representing information in different forms: Stored Data,
Rules, Constraints, Models, and Problem Solving Modules.
These forms allow information to be retrieved, derived,
checked, generated, and produced respectively. From an
Active KDL user’s point of view, queries may be answered
by simple data retrieval, complex query processing,
querying requiring heuristic/problem solving knowledge,
model instantiation, or module instantiation.

Model instantiation may occur when Active KDL
does not have sufficient data or knowledge to provide a
satisfactory user response by other means. In such a case,
Active KDL automatically creates model instances that are
executed to generate enough data to give a satisfactory
reply to the user. Depending on the complexity of the
query, model instantiation may be a simple or quite
complex process. The process centers on the creation of



sets of input parameter values that are obtained by schema
and query analysis. Model instantiation has the potential to
require an enormous amount of computation in response to
a query. Therefore, control heuristics (explicit meta-
knowledge) must be provided to control the amount of
computation. Module instantiation is very similar to model
instantiation except that it uses the query specific
parameters to identify, instantiate, and start the execution
of a problem solving module. In the event that some
aspect of the problem is unavailable (or not derivable)
from the NED-IRS, the user will be prompted for the
information.

We use query driven simulation as an example of
the model management facility of Active KDL. Query
driven simulations’ fundamental tenant is that
sirnulationists  or even naive users should see a system as a
sophisticated (and intelligent) information system (Miller
et al. 1990, Miller et al. 199la,  Miller et al. 1991b).
Systems based on query driven simulation are able to store
information about or to generate information about the
behavior of systems that users wish to study. Active KDL
can support query driven simulation by providing access to
integrated knowledge, data, model, and problem solving
module bases. The three sublanguages of Active KDL
(schema specification, query, and database programming
language) provide strong support for simulation modeling
and analysis.

An example of a problem-solving module is a
genetic algorithm-based diagnosis system (Potter et al.
1990). This type of PSM would be used to determine the
most likely set of disorders that best explains a set of
symptoms. The input needed is the set of symptoms that
indicates that the forest under consideration is not
achieving its specified goals. The output includes the
diagnosis or set of forest components that are causing the
problem(s). The domain knowledge used to guide the
heuristic search for the solution would be acquired and
placed within easy access of the diagnosis module in the
IIS.

In our IIS  approach, a problem-solving module is
invoked in much the same way that a model is invoked.
That is, whenever a user query is presented to the IIS
where the other forms of response processing fail to
produce results a PSM may provide the proper response.
The IIS meta-knowledge  that deals with preparing the plan
of action to be taken by the query processor uses its
available meta-knowledge  to determine the appropriate
response path. After determining that a PSM is
appropriate, certain parameters are taken from the query
specification (as in query driven simulation), as well as
from the information content of the IIS (possibly via the
application of meta-knowledge).  These items are used to
instantiate the selected PSM.

An important feature of the NED-IIS  user
interface is the recognition of unavailable (and necessary)
parameter values. The interface would prompt the user for
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these values and save them for later use if necessary. For
example, if a stands information has been specified and
certain field test results have been given to the NED-IIS,
the stand manager would be in a position to query for the
diagnosis (the collection of disorders that were causing the
stand to deteriorate). A diagnostic problem-solving
module defined for the domain would be invoked to
respond to the query. Critical information that was
unavailable to the diagnostic module would need to be
provided before the module could be executed. The user
would be informed of the missing items and prompted for
their values.

The decision making process on how best to
answer a query is divided into two phases: Strategic
Planning and Tactical Planning. The strategic planner is
responsible for making such decisions as how many
answers to give, and on what combination of bases
(knowledge, data, model/module) to access, for example.
The strategic planner deals with trade-offs involved in
providing answers to queries and also concerning the
nature of the base (of knowledge, data, and
models/modules) itself. Example trade-offs include
storage versus computation (should all or part of the
generated and/or inferred data be stored or recreated when
needed), degree of precision, and degree of completeness.

Tactical planning involves detailed decision
making on how to achieve a specific, concrete goal. The
techniques used are algorithmic, although in many cases
the algorithms will need to be heuristic (e.g., query
optimization is NP-Hard). For query optimization while
accessing a database, a detailed plan is produced indicating
what operations (e.g., join), access paths, and indices are to
be used to retrieve the appropriate data. For rule selection,
given a query that requires new data to be inferred, rules
will be selected/indexed based upon their relevancy, and
inference will be carried out by forward and/or backward
chaining depending on the situation (a combined
forward/backward approach is sometimes appropriate).

DCOM - The Middleware

Based on an evaluation of a number of systems,
and because most existing forest decision support systems
run on Microsoft Windows platforms, we selected a
DCOM-based framework for the integration of forest
decision support applications (Liu 1998). An earlier
prototype using NED and FVS as example applications
demonstrated the effectiveness and appropriateness of
integrating legacy and newly developed applications using
DCOM. The implementation also indicated that, based on
our previous experience with CORBA (Maheshwari 1997),
DCOM programming is much easier and more productive.
This is because we only focus on the application-specific
implementation while the framework does many routine
tasks, for example, generating the templates necessary for
creating DCOM objects and registering the applications.



An additional advantage with DCOM is that we can
develop user friendly interfaces using Microsoft resources.
The dif8cult-y with DCOM is that, like CORBA,  DCOM is
a long and complicated specification that takes a good deal
of time to master.

Conceptually, the general structure of our

DCOM-based framework for integration has three major
components: the caller, the controller that has DCOM as its
middleware, and the applications. A caller is an entity that
issues a request to an application via the controller, and
usually acts as an interface between the entire integrated
system and the user. This interface is visual and functions
differently than those of application objects in the system.
It does not have a corresponding implemented object.
Rather, it only gives a “look and feel” of the integrated
system. The caller can interact with one or more
applications to accomplish its work.

The controller (also called the intelligent
information server) is responsible for locating and
activating applications. More importantly, it controls
interactions between the caller and an application, and
between applications. The controller uses DCOM as its
backbone, since DCOM provides many system services
that facilitate the registration and finding of application
components, and the control of and communications
between them. While running an application, the
controller has the duty of managing the dialog with the
user, for example, screen handling, data entry and
validation, dialog box control, and menu interpretation.
Sometimes, the controller may have the duty to display to
the user the results passed to it by an application. An
additional responsibility of the controller is to handle errors
that may occur during an application’s execution. Because
of this, the entire process executes in a seamless way.
Adding a new application to or replacing an existing one in
the integrated system has minimal effect on how the
framework looks to the user due to its “plug-and-play”
nature. Depending on the complexity and need of the
integrated system, the controller may also contain
processing rules that help interpret the requests and
instructions supplied by the user. Therefore, only through
the controller can the applications participate in a
coordinated fashion with the integrated information
system.

An application is a component that provides
services to the integrated system. Many of the forest
decision support applications focus on single simulation,
display, input/output, or analysis tasks. Each application is
encapsulated within an interface that follows a standard
format (we use MIDL the Microsoft Interface Definition
Language). This approach makes it possible for the
application to communicate with the rest of the framework,
such that other applications can use the interface to access
the services this application provides. Interfacing also
provides an effective way to deal with legacy applications.
Many legacy applications were developed with a stand-

alone purpose. Their data and functionality may not be
readily available to other applications; the APIs of those
legacy applications may be proprietary, limited, or even
lacking. Newly constructed interfaces to the legacy
applications act like adapters so that these legacy
applications and the rest of the framework can work
together, hence enabling re-use of existing applications.

The architectural design should be general
purpose, meaning that the framework should have
distributed processing capability and provide platform
independence so that it is ready to work in heterogeneous,
cross-network environments if it is required to do so in the
future. Overall, the design is general and makes no
assumptions about the software  applications to be
integrated. its standardized interface scheme enables
integration of a variety of applications. It is an open
framework in the sense that application components can be
added and/or removed easily without drastically affecting
the htnctionality of the whole system. The adoption of
DCOM as the middleware supports this design. Since
most of the applications the USDA Forest Service is
intending to integrate are running on Windows operating
systems, DCOM is certainly a viable and logical choice.

The NED-MS  Prototype

Currently, we are integrating three legacy forest
service applications, namely Forest Vegetation Simulator
(FVS), FIBER, and SILVAH using the DCOM-based
framework. The following paragraphs discuss the three
applications in detail.

FVS is a system that uses common forest
inventory information and a growth/yield model for
projecting the growth of forest stands. FVS simulates
growth and yield for major forest species, forest types,
stand conditions and a wide range of silvicultural
treatments. It is used in the U.S. forest management field
and there are currently more than 20 variants for 20
different geographic regions covering much of the
commercial forestland in the U.S. Numerous post
processors have been developed for FVS. Post processors
are independently developed computer programs that can
be used along with FVS to further process the FVS
simulation results for specific analysis needs. For
example, the Average Summary Table post processor
calculates an average summary table from the stand output
of FVS. Typically, the simulation results from the FVS are
used as input to the post processors that perform additional
analysis. This feature makes the FVS a very useful and
versatile tool because virtually limitless applications can be
developed in the form of post processors without major
modifications to the core FVS system. FVS is written in
Fortran- and runs on PC and UNIX workstations (Teck
et al. 1996, Teck et al. 1997).

FIBER is a forest growth model that predicts the
growth interactions among species of the Northeastern
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United States over a complete range of forest treatments
(clear cutting to unmanaged stands), stand densities,
harvest intervals, species composition, and different
ecological land classifications. The user can use the
software to predict the growth and yield over a specified
time interval for individual forest stands or large forested
areas. FIBER can be used for both even-age stand and
multi-age stand management (Solomon et al. 1992).

SILVAH is a forest prescription model used for
prescribing silvicultural treatments for Hardwood stands of
the Alleghenies. It identifies important factors and
determines how they function in regulating regeneration or
stand growth. SILVAH also develops objective guidelines
and prescribes optimal silvicultural treatments to achieve
management goals. These guidelines have been integrated
into a complete stand analysis and prescription procedure
that provides a systematic way of measuring and
evaluating critical stand conditions. This data is then used
to arrive at a recommended treatment. The stand inventory
and site factors are summarized and analyzed to evaluate
the stand’s potential growth and regeneration. Then,
decision tables are used to determine proper prescription
procedure based on the critical levels of the various factors
in combination with landowner objectives (Marquis et al.
1992).

The communication between these three
applications and the client interface is through the
intelligent information server or the controller. The design
makes no assumptions about the locations of the
applications. The applications may reside on the local
machine or on a remote machine. The controller is
responsible for locating and activating the application
whether it resides locally or remotely. The controller also
contains processing rules that help interpret the user’s
needs. These processing rules determine the kind of
information that must be collected from the user. Thus
there is continuous interaction between the caller and the
controller. The processing rules also determine which
application to activate.

For example, * if the user wants to have an
assessment of bark beetle risk factors in a forest stand, the
controller will decide that FVS is the right application to be
used. It will also determine the right post processor to be
used and guide the user through a visual interface to supply
appropriate information that is needed to run FVS with this
particular post processor. If the user wants to know the
appropriate silvicultural treatments to achieve a certain
management goal, the controller will decide to invoke
SILVAH. If more than one application needs to be
activated, the processing rules will determine the
dependency between the applications and activate the
applications in the right order. Under such a scenario, the
output from one application may be needed as input to
another application. The communication between
applications is also routed through the controller. The
controller activates the first application, and after receiving
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the output it may modify the output to achieve an
acceptable input format for the second application. It then
invokes the second application with this input. The
controller also processes all outputs from the applications.

It is necessary to route all communications
through the controller because the entire integrated system
is composed of independent heterogeneous applications.
We can make no assumptions about the language, data
types and functionality of the individual applications.
Each application participates in the integrated system
through its wrapper. The wrapper around the application
provides an interface to the application in a standard
format. The controller accesses the application through the
interface provided by its wrapper. New interfaces permit
legacy applications and the rest of the framework to
integrate seamlessly and work together. Addition of other
applications can be done without affecting the existing
integrated system.

Conclusions

We have designed a DCOM based framework for
integration of legacy and future forest decision support
applications. The design makes no assumptions about the
individual software applications and is therefore a general
model that will permit seamless integration of other legacy
applications and future applications. The adoption of
DCOM as the middleware provides the model with the
capacity to run remote applications. From the client’s point
of view, the location of the application is not an issue. The
application can be run locally or remotely as needed. We
have built a visual interface common to our three sample
applications that is capable of locating and running FVS,
FIBER or SILVAH on remote or local machines. This has
been achieved by building wrappers around each of these
applications. The caller is able to access the functionality
of the applications through these wrappers. We are
currently working on the IIS component of the system, by
adding rules to the controller.
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